Finite Math - Spring 2017 Lecture Notes - 5/1/2017

Homework

• Section 5.3 - 1, 2, 5, 6, 9, 17, 19, 21, 23, 25, 27, 35, 43, 50, 53

Section 5.3 - Linear Programming in Two Dimensions: A Geometric Approach

General Description of Linear Programming. In a linear programming problem, we are concerned with optimizing (finding the maximum and minimum values, called the optimal values) of a linear objective function z of the form

$$z = ax + by$$

where a and b are not both zero and the decision variables x and y are subject to constraints given by linear inequalities. Additionally, x and y must be nonnegative, i.e., $x \ge 0$ and $y \ge 0$.

The following theorems give us information about the solvability and solution of a linear programming problem:

Theorem 1 (Fundamental Theorem of Linear Programming). If the optimal value of the objective function in a linear programming problem exists, then that value must occur at one or more of the corner points of the feasible region.

Theorem 2 (Existence of Optimal Solutions).

- (A) If the feasible region for a linear programming problem is bounded, then both the maximum value and the minimum value of the objective function always exist.
- (B) If the feasible region is unbounded and the coefficients of the objective function are positive, then the minimum value of the objective function exists, but the maximum value does not.
- (C) If the feasible region is empty, then both the maximum value and the minimum value of the objective function do not exist.

Geometric Method for Solving Linear Programming Problems.

Procedure (Geometric Method for Solving a Linear Programming Problem with Two Decision Variables).

(1) Graph the feasible region. Then, if an optimal solution exists according to Theorem 2, find the coordinates of each corner point.

- (2) Construct a corner point table listing the value of the objective function at each corner point.
- (3) Determine the optimal solution(s) from the table in Step 2 (smallest=minimum, largest=maximum).
- (4) For an applied problem, interpret the optimal solution(s) in terms of the original problem.

Example 1. Maximize and minimize z = 2x + 3y subject to

$$2x + y \ge 10$$
$$x + 2y \ge 8$$
$$x, y \ge 0$$

Solution. Minimum of z = 14 at (4, 2). No maximum.

Example 2. Maximize and minimize P = 30x + 10y subject to

$$2x + 2y \ge 4$$

$$6x + 4y \le 36$$

$$2x + y \le 10$$

$$x, y \ge 0$$

Solution. Minimum of P = 20 at (0,2). Maximum of P = 150 at (5,0).

Example 3. Maximize and minimize P = 3x + 5y subject to

$$x + 2y \le 6$$

$$x + y \le 4$$

$$2x + 3y \ge 12$$

$$x, y \ge 0$$

Solution. No optimal solutions.